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(3.2) 

and 

(3.3) 

where b = b1 or b2 for the <100> problem or the <111> problem, 

respectively. 

Consider the domain configuration in Figure 3.2(b). Again the energy 

in the domain is 

The transition through the wall proceeds in the (x,z) plane by varying ~ 

continuously from -6 to 6. The energy in the wall is 

r be sin2~, 
t. me = '" -6 ~ ~ ~ 6. (3.4) 

Equation (3.2), Equation (3.3), and Equation (3.4) are the primary equations 

derived in this section. 

3.1.2. Exchange Energy 

Within the concepts of domain theory, the exchange energy is believed 

to reside only in the domain walls or transition regions between adjacent do-

mains. The usual method for obtaining this domain wall energy is through a 

Landau-Lifshitz domain wall calculation. 33 This has been fully developed in 

the literature22 ,32 and will be described only briefly here. The method con

sists of writing a one dimensional integral expression for the energy in the 

transition region between domains. The terms which contribute to the wall 

energy are the exchange energy and the excess crystalline or magnetoelastic 

anisotropy energy incurred by the transition through the wall. It is assumed 
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that v·M = 0 (s = constant) holds through the wall. This one dimension-

al integral energy expression is minimized by variational calculus. The 

result predicts that at all points within the wall the exchange energy is 

equal to the excess anisotropy energy. It is found that the wall energy per 

unit area is given by 

<1>2 

aw = 21A sins J I (r"me(domain) r" )tl d'" Co - t. me "', (3.5) 

<1>1 

The crystal anisotropy energy has not been considered. A is again the ex

change constant and <1>1 and <1>2 are the azimuthal orientation of the mag

netization in the adjacent domains separated by the wall. 

In this section, the domain wall energies in Figure 3.2(a) and Figure 

3.2(b) will be obtained. They will be called a! and a~, respectively. For 

Figure 3.2(a), using Equation (3.2) and Equation (3.3) with Equation (3.5) 

gives 

or 

1T 

a! = 2/Albel s;n
2

e J sin<jld<jl 

o 

(3.6) 

For Figure 3.2(b), using Equation (3.2) and Equation (3.4) with Equa

tion (3.5) gives 
S 

a~ = 2v'Albel J (sin2s - sin2~;)1/2 d~. 
-8 

Making the substitution 

sin x = sinssin~ = a sin~ 


